Wireless (NFC, RFID, Bluetooth LE, ZigBee IP, RF) protocols for the Physical-Data Link layer communication technologies

Connected devices communication to the Local Network and Gateway

- 1st to ith Connected devices connect to a Local Network and Gateway
- 10s of bytes communicate between a device and the local devices network

Physical/data-link layer: Local Network and Connectivity

Protocols RF, Bluetooth Smart
 Energy, ZigBee IP, ZigBee NAN
 (neighbourhood area network), NFC,
 6LoWPAN (IPv6 over Low power
 Wireless Personal Area Networks) or
 Mobile GSM

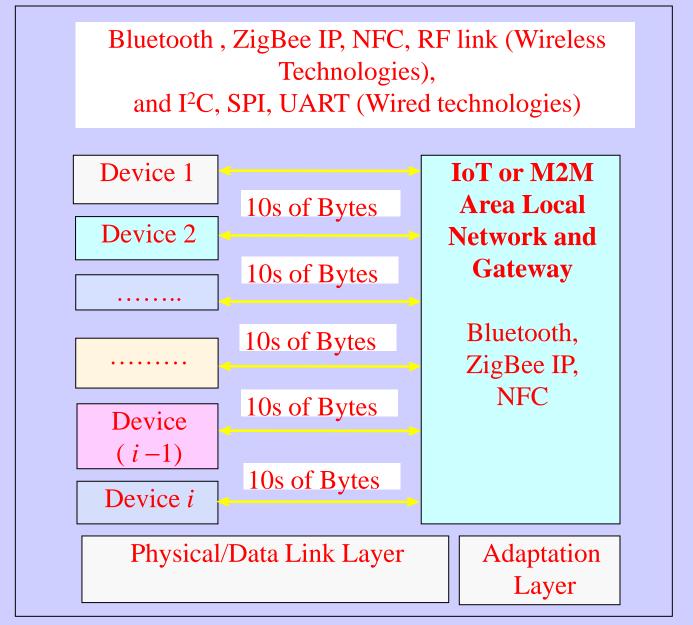


Fig. 2.4 Connectivity of Connected devices 1st to ith and local Network and Gateway Publs.: McGraw-Hill Education

NFC (Near Field Communication) wireless communication technology

- Short distance (10 cm-20 cm) Data exchange between devices
- Examples: proximity card reader/RFID/ IoT/ M2M/Mobile device, mobile payment wallet, Car electronic key, house or office entry key, Biometric passport reader.

NFC Devices

- Transmit and receive data at same instant
- Can generate RF fields for the nearby passive device such as passive RFID
- Check the RF field and detect collision of transmitted signal
- Check collision when the received signal does not match with the transmitted signal

NFC Devices

- NFC device can receive and pass the data to a Bluetooth connection or standardized LAN or Wi-Fi using the information handover functions
- data transfer rates 106 kbps, 212 kbps, 424 kbps and 848 kbps
- Setup time 0.1s

NFC Devices Communication Modes 1 and 2

- (i) P2P (point to point) mode [Both devices use the active devices in which RF fields alternately generate when communicating],
- (ii) Card-emulation mode

NFC Devices Communication Mode 3

(iii) Reader mode [Device using NFC reads passive RFID device. The RF field is generated by active NFC device. This enables passive device to communicate.]

2. RFID Devices Wireless Communication Technology

RFID wireless communication technology

- RF frequencies recommended by Regulator, [115 kbps data transfer rates using carrier radio frequency signals from 915 MHz and 868 MHz to 315 MHz and 27 MHz]
- Can use NFC protocol based mobile if within 20 cm range.

RFID Devices

- Transmit and receive data at same instant
- Can generate RF fields for the nearby passive device such as passive RFID
- Check the RF field and detect collision of transmitted signal
- Check collision when the received signal does not match with the transmitted signal

RFID Devices IC

 Generally contains integrated circuit and antenna embedded or labeled onto the object

RFID Devices Types 1 and 2

- (i) Passive device (without in-build power source) which gather charges from the received radiation and thus starts functioning,
- (ii) Active (with power source) [can on its own discover nearby node for data interchange]

3. Bluetooth BR/EDR and Bluetooth Low Energy

Bluetooth Protocols

- Bluetooth BR (Basic Rate 1)
- Bluetooth EDR (Enhanced Data Rate
 2 Mbps and 3 Mbps)
- Bluetooth Low Energy (BT LE 1Mbps) two types of modes for the devices in the late

Bluetooth Smart

• Bluetooth v4.2. BT LE (Bluetooth Smart) two types of modes for the devices in the latest version

BT LE

 BT LE range is 150 m at 10 mW power output, data transfer rate is 1 Mbps and set-up time < 6s

BT Features

- Auto- synchronization between mobile and other devices when both use BT
- BT network uses features of selfdiscovery, self configuration and selfhealing
- Support to NFC pairing for low latency in pairing the BT devices

4. ZigBee IP/ZigBee SE 2.0

ZigBee Protocols for WPAN devices network

- ZigBee IP: an enhancement for the IPv6 connectivity
- ZigBee IP RFD (reduced function device) (functions for the 'sleepy'/battery-operated device)
- Sleepy means one that wakes up infrequently, sends data then goes back to sleep

ZigBee NAN and Smart Energy 2.0 Protocols

- ZigBee NAN (Neighbourhood Area Network)
- A version for Smart Grid
- ZigBee SE 2.0 energy management and energy efficiency capabilities using the IP network

ZigBee Protocols

- Range is 10 to 200 m data transfer rate 250 kbps, low power operation,
- ISM band frequencies direct sequence spread spectrum 16-channel radio

ZigBee Features

- Self configuring
- Self healing
- Dynamic pairing mesh network
- Support for both multicast and unicast options

ZigBee Features

- Provides link level security using AES-CCM-128 (2.4 GHz ISM band frequency hopping spread spectrum (FHSS in BT BR/EDR)
- Direct sequence spread spectrum
 (DSSS in LE) 40-channel radio (2400 2483.5 MHz)

Chapter-2 L02: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

5. WiFi

WiFi an interface technology based on IEEE 802.11 protocol

- Wireless Local Area Networks (WLANs)
- Three main applications and connectivity through home access Point, public hotspots, enterprises, universities and offices.
- Wi-Fi enables Internet Connectivity of distributed WLAN networks

- Generally the 2.4 GHz IEEE 802.11b adapter or 5 GHz (802.11a or 802.11g) or 802.11n or other 802.11 series protocols,
- Interfaces use 2.4 GHz or 5 GHz antenna,

- offers mobility and roaming
- have easy installation simplicity and flexibility,

- Easy installation simplicity and flexibility,
- Coverage range 30 m to 125 m,
- Limited coverage version 802.11a which coexists with b and g,
- Other versions 802.11b, 802.11g for high data rates up to 54 Mbps, and 802.11n

- Interoperability with wireless as well as wired infrastructure
- Ensures compatibility and enables easier access and hide complexity when enabling the wireless access to data, media and streams, applications and services

6. RF Transceivers and RF Modules

RF Modules

- Number of systems uses the RF modules
- Applications needing wireless connectivity
- Examples: security, telemetry, telematics, fleet management, home.

Simple RF circuits

- Transmitters, receivers, and transceivers
- An oscillator generates RF pulses of required active duty cycle and connects to a transmitter

IoT/M2M Applications

 Deploy ISM band RF modules with transceivers or just transmitter or receiver

7. GSM, GPRS, UMTS/LTE and WiMax

GSM, GPRS, UMTS/ LTE and WiMax

- Mobile phones provisions for the USB wired port, BT and Wi-Fi devices
- Wireless Internet connectivity using GSM, GPRS, UMTS/ LTE and WiMax services of Mobile service provider and Wi-Fi using PCMCIA card

8. Wireless USB

Wireless USB

• Wireless extension of USB 2.0 and it operate at UWB (ultra wide band) 5.1 GHZ to 10.6 GHz frequencies. It is for short-range personal area network (high speed 480 Mbps 3 meter or 110 Mbps 10 meter channel).

Wireless USB Features

- A host wire adapter (HWA) and a device wire adapter (DWA) wireless USB solution
- Supports the dual-role devices
 (DRDs). A device can be a USB
 device as well as limited capability
 host.

Summary

We learnt

- Wireless protoocls
- NFC, RFID, Bluetooth, ZigBee, WiFI, RF Modules, GSM and other mobile protocols
- Wireless USB

End of Lesson 2 on Wireless (NFC, RFID, Bluetooth LE, ZigBee IP, RF) protocols for the Physical-Data Link layer communication technologies